skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Asensio, Omar Isaac"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Data for Policy (dataforpolicy.org), a trans-disciplinary community of research and practice, has emerged around the application and evaluation of data technologies and analytics for policy and governance. Research in this area has involved cross-sector collaborations, but the areas of emphasis have previously been unclear. Within the Data for Policy framework of six focus areas, this report offers a landscape review of Focus Area 2: Technologies and Analytics. Taking stock of recent advancements and challenges can help shape research priorities for this community. We highlight four commonly used technologies for prediction and inference that leverage datasets from the digital environment: machine learning (ML) and artificial intelligence systems, the internet-of-things, digital twins, and distributed ledger systems. We review innovations in research evaluation and discuss future directions for policy decision-making. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Contestabile, Monica (Ed.)
    Abstract Housing policies address the human dimensions of increasing urban density, but their energy and sustainability implications are hard to measure due to challenges with siloed civic data. This is especially critical when evaluating policies targeting low- and moderate-income (LMI) households. For example, a major challenge to achieving national energy efficiency goals has been participation by LMI households. Standalone energy efficiency policies, such as information-based programmes and weatherization assistance, tend to attract affluent, informed households or suffer from low participation rates. In this Article, we provide evidence that federal housing policies, specifically community development block grants, accelerate energy efficiency participation from LMI households, including renters and multifamily residents. We conduct record linkage on 5.9M observations of housing programme participation and utility consumption to quantify the hidden benefits of locally administered housing block grants in a typical entitlement community in the US Southeast. We provide long-run evidence across 16,680 properties that housing policies generate 5–11% energy savings as spillover benefits to economically burdened households not conventionally targeted for energy efficiency participation. 
    more » « less
  3. The electrification of transportation is a growing strategy to reduce mobile source emissions and air pollution globally. To encourage adoption of electric vehicles, there is a need for reliable evidence about pricing in pub-lic charging stations that can serve a greater number of communities. However, user-entered pricing information by thousands of charge point operators (CPOs) has created ambiguity for large-scale aggregation, increasing both the cost of analysis for researchers and search costs for consumers. In this paper, we use large language models to address standing challenges with price discovery in distributed digital data. We show that generative AI models can effectively extract pricing mechanisms from unstructured text with high accuracy, and at substantially lower cost of three to four orders of magnitude lower than human curation (USD 0.006 pennies per observation). We exploit the few-shot learning capabilities of GPT-4 with human-in-the-loop feedback—beating prior classification performance benchmarks with fewer training data. The most common pricing models include free, energy-based (per kWh), and time-based (per unit time), with tiered pricing (variable pricing based on usage) being the most prevalent among paid stations. Behavioral insights from a US nationally representative sample of 13,008 stations suggest that EV users are commonly frustrated with the slower than expected charging rates and the total cost of charging. This study uncovers additional consumer barriers to charging services concerning the need for better price standardization. 
    more » « less
  4. This article examines the landscape of Science, Technology, and Innovation policies in Central America, focusing on Nicaragua, Guatemala, Honduras, and El Salvador. These nations face significant challenges in leveraging STI for sustainable development, including financial constraints and limited resources. Additionally, Central America struggles with systemic issues such as corruption, violence, and high levels of emigration, further complicating efforts to advance STI. A workshop organized by Georgetown University's Science Technology and International Affairs program brought together scholars to discuss STI policies, resulting in key recommendations. The article highlights critical challenges, including over-reliance on state funding, stagnant researcher numbers, and the pressing need for research diversification. It emphasizes the importance of youth engagement, leadership, and resilience in shaping effective STI policies. Recommendations include investing in science education, establishing governmental scientific advisory bodies, promoting research diversity, and addressing climate change through STI strategies. The findings provide valuable insights for scholars, policymakers, and international organizations working with less developed nations globally. 
    more » « less
    Free, publicly-accessible full text available December 11, 2025
  5. Association for the Advancement of Artificial Intelligence (Ed.)
    Given the heightened global awareness and attention to the negative externalities of plastics use, many state and local governments are considering legislation that will limit single-use plastics for consumers and retailers under extended producer responsibility laws. Considering the growing momentum of these climate regulations globally, there is a need for reliable and cost-effective measures of the public response to this rulemaking for inference and prediction. Automated computational approaches such as generative AI could enable real-time discovery of consumer preferences for regulations but have yet to see broad adoption in this domain due to concerns about evaluation costs and reliability across large-scale social data. In this study, we leveraged the zero and few-shot learning capabilities of GPT-4 to classify public sentiment towards regulations with increasing complexity in expert prompting. With a zero-shot approach, we achieved a 92% F1 score (s.d. 1%) and 91% accuracy (s.d. 1%), which resulted in three orders of magnitude lower research evaluation cost at 0.138 pennies per observation. We then use this model to analyze 5,132 tweets related to the policy process of the California SB-54 bill, which mandates user fees and limits plastic packaging. The policy study reveals a 12.4% increase in opposing public sentiment immediately after the bill was enacted with no significant changes earlier in the policy process. These findings shed light on the dynamics of public engagement with lower cost models for research evaluation. We find that public opposition to single-use plastics regulation becomes evident in social data only when a bill is effectively enacted. 
    more » « less
  6. Dean, Nicky (Ed.)
    Evidence from a policy experiment shows that public safety bans on electric scooters and electric bikes can generate unintended traffic congestion in city centres. The studied ban is found to increase travel times by 9–11% for daily evening commutes and by 37% following stadium events. 
    more » « less
  7. Abstract Micromobility, such as electric scooters and electric bikes—an estimated US$300 billion global market by 2030—will accelerate electrification efforts and fundamentally change urban mobility patterns. However, the impacts of micromobility adoption on traffic congestion and sustainability remain unclear. Here we leverage advances in mobile geofencing and high-resolution data to study the effects of a policy intervention, which unexpectedly banned the use of scooters during evening hours with remote shutdown, guaranteeing near perfect compliance. We test theories of habit discontinuity to provide statistical identification for whether micromobility users substitute scooters for cars. Evidence from a natural experiment in a major US city shows increases in travel time of 9–11% for daily commuting and 37% for large events. Given the growing popularity of restrictions on the use of micromobility devices globally, cities should expect to see trade-offs between micromobility restrictions designed to promote public safety and increased emissions associated with heightened congestion. 
    more » « less
  8. Abstract Problems of poor network interoperability in electric vehicle (EV) infrastructure, where data about real-time usage or consumption is not easily shared across service providers, has plagued the widespread analysis of energy used for transportation. In this article, we present a high-resolution dataset of real-time EV charging transactions resolved to the nearest second over a one-year period at a multi-site corporate campus. This includes 105 charging stations across 25 different facilities operated by a single firm in the U.S. Department of Energy Workplace Charging Challenge. The high-resolution data has 3,395 real-time transactions and 85 users with both paid and free sessions. The data has been expanded for re-use such as identifying charging behaviour and segmenting user groups by frequency of usage, stage of adoption, and employee type. Potential applications include but are not limited to simulating and parameterizing energy demand models; investigating flexible charge scheduling and optimal power flow problems; characterizing transportation emissions and electric mobility patterns at high temporal resolution; and evaluating characteristics of early adopters and lead user innovation. 
    more » « less
  9. {"Abstract":["Human and machine readable replication dataset for "Housing Policies Accelerate Energy Efficiency Participation" Omar I. Asensio, Olga Churkina, Becky Rafter, Kira E. O'Hare"]} 
    more » « less